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For a class of classical spin models in 2D satisfying a certain continuity 
constraint it is proven that some of their correlations do not decay exponen- 
tially. The class contains discrete and continuous spin systems with Abelian and 
non-Abelian symmetry groups. For the discrete models our results imply that 
they show either long-range order or are in a soft phase characterized by 
powerlike decay of correlations; for the continuous models only the second 
possibility exists. The continuous models include a version of the plane rotator 
[-0(2)] model; for this model we rederive, modulo two conjectures, the 
Frfhlich-Spencer result on the existence of the Kosterlitz-Thouless phase in a 
very simple way. The proof is based on percolation-theoretic and topological 
arguments. 
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1. I N T R O D U C T I O N  

Percolat ion models are the simplest models of statistical mechanics 
showing a nontr iv ia l  phase structure. O n  the other hand,  since the ground-  
breaking work of Fo r tu in  and  Kasteleyn,  (1) a r igorous connect ion  has been 
k n o w n  between some spin models (the Potts  models)  and  certain models 
of correlated percolation.  This idea can be extended to a wider class of 
models by embedding  Ising variables in them, as first noted  in the papers 
by Brower and  T a m a y o  ~2~ and Patrascioiu  (3) in connect ion  with a new 

Monte  Carlo upda t ing  scheme for the O ( N )  classical ferromagnets. 
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In this paper we use these ideas to prove the absence of exponential 
clustering in certain two-dimensional ferromagnetic systems. These models 
include discrete spin systems with Abelian and non-Abelian symmetry as 
well as a version of the 0(2)  (plane rotator) model; we thus rederive the 
celebrated results of Fr6hlich and Spencer (a) on the existence of the 
Kosterlitz-Thouless phase for this model. In a separate paper one of us (5) 
proposes an extension of these arguments to the non-Abelian O(N) models 
(U~> 3). 

Our arguments described here depend on some conjectures: One of 
them is essentially an extension of the Mermin-Wagner theorem to our 
models with continuous symmetry; the other one is a generalization of 
Harris's result (6) on the noncoexistence of disjoint percolating clusters in 
two dimensions. A precise formulation of our conjectures is given in 
Section 3. We have not been able to prove them, but we do not think 
anybody will doubt their truth. Under the assumption of these conjectures 
our arguments are rigorous. A short announcement of our results appears 
in ref. 7. 

2. THE M O D E L S  

We consider two-dimensional classical spin models with nearest 
neighbor interaction on the triangular lattice T. The spins always take 
values in a unit sphere SN_I or a discrete subset of it, such a regular 
polytope P. For  any finite subset A c T the model is specified by a 
probability measure of the form 

d#A = Z~IZ~A({S(x)})exp[- f lHA({S(x)}]  ~] dS(x) (1) 
x 

where H A is a ferromagnetic nearest neighbor interaction, typically the 
standard nearest neighbor action (s.n.n.a.) 

H =  - ~ S ( x ) . S ( y )  (2) 
( xy > 

g]  is a constraint enforcing that n.n. spins only differ by at most a certain 
e > 0; in other words g]  is the characteristic function of the set of spin 
configurations satisfying 

I S ( x ) - S ( y ) l  ~E (3) 

for all n.n. pairs x,y. So this constraint imposes a certain Lipschitz 
continuity on the configurations. It is clear that the constrained model can 
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be obtained as a limit of models with bounded n.n. coupling. At low tem- 
peratures (/3 ~> e-2) the constraint will be unimportant because the s.n.n.a. 
by itself will make configurations violating it very improbable. Two 
rigorous results make this intuitively obvious statement more precise: 

Proposition 1 (Georgii(8)). In the s.n.n.a, model defined by (1) but 
without the constraint g~, for any ~ > 0 at sufficiently low temperature 
there is a percolating cluster of bonds satisfying IS (x ) -  S(y)L < e. 

Proposition 2 (Bricmont and Fontaine(9)). In the s.n.n.a model 
(without constraint) for any ~ > 0 at sufficiently large/3 the probability of 
having a set of C bonds satisfying [S(x ) -S (y ) [  >>.~ is bounded by 
exp(-/3aCe 2) for some a > 0 .  

These results suggest strongly that at large/3 the constraint embodied 
in Z~ does not affect the behavior of the model in any essential way, 
provided e ~  (1//3) 1/2. It should also be noted that introduction of the 
constraint does not affect the perturbative expansion in powers of 1/3 
whenever it exists (for instance, in a finite volume). But it does eliminate 
the possibility of using a conventional high-temperature expansion, because 
the constraint always enforces at least short-range order. This suggests that 
the constraint models might not have a high-temperature phase with 
exponential clustering, a fact that will be established for subset of these 
models in this paper. These models are therefore interesting in their own 
right. But we introduced the constraint mainly for the sake of convenience, 
to avoid the technical complications arising from the need to introduce 
estimates involving the exceptional sets ("defects") where it is violated. 
Strictly speaking, we are not dealing with Gibbs states, but "specifications" 
in the terminology of Georgii(l~ as remarked, however, they can be 
obtained as limits of Gibbs states by sending certain parameters in the 
Hamiltonian (action) to oe. We will nevertheless talk about "Gibbs" states 
by a slight abuse of language. 

Finally, the a priori mesure dS will for the continuous models be either 
the standard O(N) invariant spherical measure on SN_I or a measure 
invariant under an 0(2) subgroup of O(N), such as the invariant measure 
multiplied by the characteristic function of the set { S [ S . n < c } ;  for the 
discrete models it will be a measure concentrated on the vertices of a 
polytope P and invariant under a discrete symmetry group H ~ O(N). The 
polytope P need not really be regular; it is sufficient that the symmetry 
group H acts transitively on its vertices. A nonregular example is the 
"truncated icosahedron" discussed in Section 5. 
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3. FACTS A N D  C O N J E C T U R E S  

In this section we recall certain known facts relevant for our analysis 
and state some conjectures that are very plausible but unproven extensions 
of those facts; our main results will be derived under the assumption of 
(one or two of) those conjectures. 

3.1. Ergodic i ty  

The Mermin-Wagner theorem states in short that for 2D models, 
invariant under a compact connected Lie group G and with short-range 
interactions, all Gibbs states will also be invariant under G. 

This theorem has been proven in various ways and under slightly 
different technical assumptions by various authors. ~1H4) One of the 
technical restrictions needed in all the proofs is that the Hamiltonian be 
twice differentiable, which is violated in our Lipschitz continuous models. 
But it is plausible that the theorem remains valid for those models, because 
intuitively the symmetry is restored by "soft" spin waves that do not violate 
the constraint. In the Appendix we give a proof of this conjecture for a 
simplified version ~)f such models with even stronger restrictions on the 
spin fluctuations. 

The Mermin-Wagner theorem suggests something even stronger, 
namely that there is a unique translation-invariant infinite-volume Gibbs 
state specified by the action (Hamiltonian) (1). Bricmont et al. ~5) (see also 
ref. 16) proved this for the s.n.n.a. 0(2) model. By the Birkhoff ergodic 
theorem this pure phase is then ergodic for the translation group, i.e., with 
probability 1 the space average of any observable (bounded local function 
of the spins) is equal to its expectation value in the Gibbs measure. Because 
of this uniqueness this state will then be automatically G-invariant (the 
symmetry group transforms translation-invariant Gibbs states into trans- 
lation-invariant Gibbs states), so that the Mermin-Wagner theorem is 
implied by ergodicity. In the sequel we will need the following for the 
continuous models specified by (1): 

Conjecture 1 (Ergodicity). Any translation-invariant infinite- 
volume "Gibbs" state for the O(N)  models specified by (1) is ergodic for 
the lattice translation group. 

For the discrete models Conjecture 1 cannot hold in general because 
there will be spontaneous symmetry breaking at least for large ft. Therefore 
our results for discrete models are weaker: while for the 0(2) model we 
establish masslessness, for the discrete models we only obtain the absence 
of the high-temperature phase with exponential clustering, but we cannot 
decide by our method if they show long-range order or algebraic decay of 
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correlations. For this weaker result, however, we do not need a replace- 
ment of Conjecture 1; it suffices to make use of the ergodic decomposition 
and work in an ergodic component. (1~ 

Ergodicity means that we can discover all properties of the infinite- 
volume Gibbs state by looking at a single "typical" configuration (the word 
"configuration" simply stands for a map S: 7/24 SN_I), Because of the 
Mermin-Wagner property this implies also that for the O(N) models any 
"typical" configuration has to be O(N) symmetric by itself in the sense that 
space averages are O(N) symmetric; furthermore, any property depending 
on the choice of a unit vector n ~ S~v_ 1 that holds for space averages in a 
typical configuration has to hold also in the same configuration with 
respect to any other unit vector. As an example, one may think of the 
average size of the "hemispherical" clusters defined by the connected 
components of S-1 ({S.n  > 0}) that will play an important role in the 
following discussion. 

To illustrate what is meant by a "typical" configuration, consider the 
following concrete realization: It can be proven that certain stochastic 
processes converge to the correct Gibbs state. Monte Carlo simulations can 
be thought of as realizations of such processes. After a certain number of 
sweeps of the lattice needed to achieve thermalization, one starts taking 
measurements essentially as time averages of the desired quantity. To 
measure ( A ) ,  where A is a local observable, one will compute the average 
value of this quantity over a large number of configurations produced by 
the Monte Carlo procedure. Ergodicity says that one could as well obtain 
the answer by running the Monte Carlo algorithm on a very large lattice 
until achieving thermalization, then in one given configuration compute 

1 
y~A A(y) (4) IAI 

where A(y) is the observable A shifted by the lattice vector y. In the 
infinite-volume limit (4) will coincide with ( A ) .  This is the basis of the 
well-known procedure of spatial averaging used in numerical studies to 
improve the statistics. 

There is, however, another consequence of ergodicity which will be 
useful: Let us assume that the dynamical variables of the system are 
divided into two groups; for instance, in the O(N) model the components 
of the spins S(x) parallel to a certain reference vector n, called Sll, and the 
transverse components S• perpendicular to n. Let us also consider an 
observable A depending only on S• Clearly the expectation value of A can 
be obtained by first taking the conditional expectation conditioned on the 
variables Sil and then integrating over the variables Sll (annealed prescrip- 
tion). By the assumed ergodicity we can replace the last integration by a 
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space average in a typical configuration. In the context of Monte Carlo 
simulations this means that we can measure the expectation value of A by 
first doing enough Monte Carlo sweeps to produce a well-thermalized 
configuration for the full system, then update only the variables S• 
measure A and its translates, and finally average over the translates. In 
other words, we can look at the system, as far as the variables S• are 
concerned, as a system with suitable (quenched) random couplings. We 
should like to note that this use of ergodicity allows us to avoid the 
consideration of possibly non-Gibbsian measures which might be produced 
by integrating out the variables Sll(x); the price to be paid is the loss of 
translation invariance. However, the measure governing the distribution of 
the variables Sir and hence the random couplings of the S• system is 
translation invariant if the Gibbs state of the full model is, as we assume. 

3.2. Impossibi l i ty of  S imul taneous Percolation of  Disjoint 
Clusters in T w o  Dimensions 

Consider some site percolation problem in two dimensions. Suppose 
the underlying measure enjoys: (a) the symmetries of the lattice (trans- 
lations and rotations), (b) the F K G  property, and (c) the one-step Markov 
property. 

Several rigorous papers ~17 19) have used Harris's strategy ~6] to prove 
that under these circumstances, in two dimensions, clusters of occupied 
sites and clusters of unoccupied sites cannot percolate at the same time. 
The basic reason why this is so in two dimensions is that once the origin 
has nonvanishing probability to be connected to infinity via a set of 
occupied sites, there is a nonvanishing probability for the origin to be 
surrounded by a closed circuit of such sites. The presence of such circuits 
prevents the unoccupied sites from percolating. 

We would like to conjecture that this result holds under much more 
general circumstances, because the basic geometric reason for it is the 
"intuitively obvious" fact that in two dimensions percolating clusters 
produced by a measure invariant under translations and lattice rotations 
will get in each other's way. Specifically, we conjecture that for the O(N) 
models considered here the following is true: 

Conjecture  2. Consider a partition of the sphere a N_  1 into a set B 
and its complement ,-~ B, where B and ~ B are both assumed to have non- 
empty interior. Then in two dimensions in a Gibbs measure for a nearest 
neighbor interaction obeying symmetry trader lattice translations and 
rotations there is a.s. no simultaneous percolation of the clusters of S ~(B) 
and of S - I ( ~ B ) .  



Phase Structure of 2D Spin Models and Percolation 579 

For the discrete models also discussed here we have to give a slightly 
different formulation: 

Conjecture 2'. Consider a nontrivial partition of the vertex set of 
the polytope PM into a set B and its complement ~ B. Then in two dimen- 
sions for a Gibbs measure corresponding to a nearest neighbor interaction 
symmetric under lattice translations and rotations there is no simultaneous 
percolation of the clusters of S-I(B) and of S - I ( ~ B ) .  

The missing ingredients in proving these conjectures are the F K G  
property and the one-step Markov property for the induced percolation 
measure, which are used in the proof of the analogous property for the 
Ising model. 

3.3. Russo's Theorem on the Divergence of the Mean 
Cluster Size 

Russo (ref. 19, Proposition 1) proved the following simple but impor- 
tant result: 

Proposition 3. If in a translation-invariant site percolation 
problem the occupied sites do not percolate and the expected size of the 
cluster of occupied sites attached to the origin is finite, then the empty sites 
* percolate. 

We will call this expected size of the cluster attached to the origin in 
short the mean cluster size. A logically equivalent formulation of this result 
is: (19) If in a translation-invariant percolation problem there is neither 
percolation of occupied sites nor * percolation of empty sites, then the 
expected size of the clusters of occupied sites as well as the * clusters of 
empty sites diverges. 

For the triangular lattice we are considering, percolation and * 
percolation are the same, hence Russo's result adapted to the T lattice gives 
the following result: 

Proposition 3'. If in a translation-invariant percolation model on 
the T lattice neither the empty nor the occupied sites percolate, the mean 
cluster size of both of them diverges. 

4. EMBEDDED ISING VARIABLES AND INDUCED 
PERCOLATION MODEL 

Our analysis is based upon the representation of our models as Ising 
models with random couplings; this is also the basis of the cluster Monte 
Carlo algorithms developed for these systems in recent years, which have 

822/69/3-4-9 
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led to a remarkable reduction in critical slowing down. (2w22) Let us first 
describe the Fortuin-Kasteleyn (FK) representation for the s.n.n.a. O(N) 
ferromagnets with the action 

H =  - ~ S ( x ) . S ( y )  (5) 
(xy) 

Choosing some unit vector n ~ S N_ 1, an alternative representation of 
the associated Gibbs measure in a finite volume A becomes possible, using 
as dynamical variables {a~ = sgn(S(x), n), ]Stf(x)[, S• 

dl2A=Z~lexp{fl ~ [axaylSil(x)llSH(y)[+S•177 (6) 
(xy> 

where SH=S.n,  S •  and dSda is the obvious a priori 
measure. In terms of the variables a, the system is that of an Ising 
ferromagnet, amenable to the Fortuin-Kasteleyn (FK) representation (1) 
[we can ignore the'exceptional situation that Sll(x ) = 0 for some x, making 
the corresponding Ising variable ill defined: this event obviously has 
probability 0 in a finite system; by ergodicity the probability vanishes also 
in the thermodynamic limit]. This representation leads to the following 
correlated bond percolation problem: Given a configuration of the Ising 
spins, a bond between two nearest neighbor spins of the lattice is activated 
only when they are equal, and then only with probability 

Pxy = 1 - exp[ - 2fl Igtl(x } Sit(y)I ] (7) 

If we introduce the bond occupation variables {nxy}, nxy ~ {0, 1}, they 
are therefore distributed according to the following conditional probability, 
given a configuration of the spins: 

P({nxy}I { S ( x ) } ) = Z A  ~ I-[ {6~x~y[nxyPxy+(l--nxy)(1--pxy)] 
(xy) 

+ (1 - fi~x~y)(1 - nxy)} (8) 

On the other hand, the conditional probability distribution of the 
Ising variables, given the bond occupation numbers, is obtained by 
assigning to each cluster C + 1 with probability 1/2: 
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The joint distribution of all the variables is given by the probability density 

P({nxy }, {S (x ) } )=Z~ '  l-I {6~xoy[nxypx~+ (1 --nxy)(1 -Pxy)]  
<xy ) 

( xy )  

(lO) 

and it is not hard to see that (10) reproduces the standard Gibbs measure 
for the spins after summing over the bond occupation numbers. 

One version of the cluster algorithms consists essentially in alternating 
updates of the bond occupation numbers and the Ising spins according 
to the conditional probabilities (8) and (9), randomly selecting a new 
reference vector n in between. 

Equations (8)-(10) have obvious generalization to more general 
nearest neighbor action for the O(N) models of the form 

H{S(x)}= ~ h(S(x).S(y)) (11) 
(xy > 

The Ising variables can be introduced as before. Only the bond 
activation probabilities have to be adjusted: Denote by N~S the reflected 
image of S: 

NnS= S - 2 n ( S . n )  (12) 

Then (7) has to be replaced by 

Pxy = 1 - exp[min{0, A }] (13) 

with A = fl[(h(S(x). S ( y ) ) -  h(Y2nS(x ) �9 S(y))], whereas the form of (8), 
(9) remains unaltered. Obviously (10) will have to be replaced by 

P({nxy}, {S(x)})~- ZA 1 U {'~x~,Enxypxy + (1-nxy)(1 - Pxy)] 
( xy )  

+(1--6~xo~)(1--nxy)} 1-[ eBh(S(x)Stx)) (10') 
(xy> 

In general the induced Ising model will not necessarily have only 
ferromagnetic couplings, so the derivation of the FK representation given 
in ref. 1 cannot be carried over. Nevertheless it is easy to check that (10') 
after summing over the bond occupation numbers still gives the right 
Gibbs measure. 

For our models with a Lipschitz constraint, considering them as limits 
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of models with bounded actions, one obtains simply Pxy = 1 unless both 
IS (x ) -  S(y)[ ~< e and IN, S ( x ) -  S(y)[ ~< e; this means that only bonds near 
the equator can be unoccupied. 

For the discrete models one proceeds in essentially the same way; it is 
only necessary to orient the polytope P in such a way that the reflection 
Nn maps the vertex set of P into itself. It is allowed that ~n has fixed 
points: in this case the corresponding Ising variables can be assigned 
arbitrarily because they are not coupled. 

The percolation problem defined by (8) can be decomposed into two 
steps: First one forms "hemispherical" (H) clusters of parallel Ising spins 
considered as bond clusters (and again it does not matter whether we 
consider the hemispheres as open or closed); then one deletes from them 
randomly bonds with probability 1 -  Pxy, thereby obtaining the "Fortuin- 
Kasteleyn" (FK) clusters. Fortuin and Kasteleyn showed already (1> that 
the magnetic susceptibility of the s.n.n.a. Ising is equal to the expected size 
of the FK cluster attached to the origin. An analogous relation holds also 
in our "embedded" Ising system: Denote by ( F K )  the expected size 
(measured by the number of lattices sites in it) of the FK cluster attached 
to the origin (often called the mean size of the FK cluster for short); then 
we have 

1 
- ~ @rx~y )= ( F K )  (14) 

ZIs ]A[ x, y e A  

In (14) the expectation values are taken with the finite-volume 
probability measure (10'). The thermodynamic limit is then taken for the 
2-point function and the corresponding connectivity function of the FK 
clusters; this way we obtain a version of (14) in the thermodynamic limit. 
If the two-point function (~xO-y> decays exponentially (uniformly in the 
volume), gis will have a finite limit as A ~ T. Conversely, if (FK>=Z~s  
diverges, there will be massless modes in the system and exponential 
clustering has to fail for some observables. By the assumed ergodicity, the 
infinite-volume limit of ( F K  > can also be obtained as the average over x 
of the size of the cluster attached to x in a "typical configuration." 

The proof that under certain conditions in fact ( F K >  ~--Zis diverges 
will be given in the next sections and uses some topological properties. For 
now we note the following fact, which is an easy consequence of the simple 
form Russo's theorem takes on the T lattice (Proposition 3'): 

Lemma 1. Consider a Gibbs state of an O(N), N~> 1, model on the 
T lattice that is invariant under lattice translations as well as the symmetry 
group O(N). Assume that Conjecture2 holds. If we denote by ( H  + > 
(<H >) the expected size of the upper (lower) hemispherical cluster 
attached to the origin, then ( H  + ) = ( H - ) =  oe. 
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Proof. By the assumed O(N) invariance and Conjecture 2 none of 
the hemispherical clusters can percolate. So the lemma follows from 
Proposition 3'. | 

For the discrete models there is an analogous statement: 

Lomma 1'. Consider a Gibbs state of a discrete model with spins 
taking values in a polytope P c SN 1 with invariance group H c O(N) on 
the T lattice. Assume that H contains a reflection ~n acting on P without 
fixed points. Assume furthermore that the state is invariant under lattice 
translations and rotations as well as the symmetry group H and that 
Conjecture 2 holds. If we denote by (H + ) ( ( H - ) )  the expected size of 
the upper (lower) hemispherical cluster attached to the origin, then 
( H + ) =  ( H - ) - - ~ .  

Next we use the fact that for a model obeying a Lipschitz condition of 
the form (2) the only bonds that may be deleted in going from the H to 
the FK clusters have to have spins within distance e of the equator at both 
ends. In other words, the FK clusters contain the clusters of the "reduced 
hemispheres" 

Yt~  =- {S~SN_I  IS H >6} (15a) 

~ ;  =- { s ~ s N _  , I&~ < -6} (15b) 

for all 6 > e, and if the clusters of ~ and aft- have divergent mean size, 
so will the FK clusters. This leads us to the following criterion for massless- 
ness for the O(N) models: 

Proposition 4. Assume that Conjectures 1 and 2 hold. Let 6 > e. If 
the inverse image under the map S of the equatorial strip 

5#6={S~S N 1[IS.hi <•} (16) 

does not percolate, then the Ising susceptibility (14) diverges and the 
system does not cluster exponentially. 

Proof. The complement of the strip (16) consists of the two disjoint 
reduced hemispheres 

~ - { S ~ . S  N IlStI>•} (17a) 

~ ~ {SeSN_IISNI < --8} (17b) 

The set S-l(ovg~ - w ~tt°~) cannot percolate, because if it did, by the 
Lipschitz condition one of its disjoint subsets S - ~ ( ~ 2 )  and S - 1 ( ~  -) 
would have to percolate; symmetry would then require both of them to 
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percolate, which would contradict Conjecture 2. Now, by Russo's theorem 
(Proposition 3') this means that each of the two disjoint subsets has 
clusters of divergent mean size. By the remark made above this implies 
divergence of ( F K ) .  | 

This proposition therefore reduces the proof of masslessness for the 
O(N) models given by (1) to the proof that certain equatorial strips do not 
percolate, or equivalently, that certain reduced hemispheres have divergent 
mean cluster size. In the next section we will use the topology of the circle 
to show that this actually happens. In ref. 5, arguments are given that also 
in the O(N), N~> 3, models equatorial strips as in Proposition 4 do not 
percolate. 

For the discrete models a similar criterion can be established, but it 
would require the use of Conjecture 1, which, as said before, cannot be 
expected to hold in general because of the occurrence of spontaneous 
symmetry breaking. 

5. A TOPOLOGICAL A R G U M E N T  

In this section we use topological properties of the circle and certain 
polytopes to establish some elementary percolation properties for Lipschitz 
continuous maps from the T lattice into these spaces. In the next section 
these properties will be used to prove our results about 2D spin systems. 

We first look at maps from the T lattice to general graphs: Let G be 
a finite graph, V(G) its vertex set, and f be a map from the triangular 
lattice T into V(G): 

f: T ~  V(G) (18) 

f is assumed to be continuous in the sense that n.n. points of the lattice are 
mapped either into the same vertex or into vertices of G connected by an 
edge. The main consequence of the continuity of the map f for us is that 
the image of a connected subset of T will be connected (in the obvious 
sense  ). 

Our goal is to establish percolation properties of the inverse image 
under f of certain subsets of V(G). There are two properties which are 
important: 

D e f i n i t i o n  a. We say that a subset C= V(G) has the property (P) 
("percolates") under f iff f - l (C)  has an infinite connected component. If 
the complement of a set C percolates, we say that C "forms islands." 

Def in i t i on  2. We say that a subset Cc V(G) has the property (R) 
("forms rings") under f iff any finite subset F ~  T is surrounded by a 
connected component of f 1(C). 
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Remark 1. Obviously, if (P) holds for a certain set, it will hold for 
one of its connected components. 

Remark 2. Note that the properties (P) and (R) are not mutually 
exclusive. In fact, in the cases of interest, coming from Gibbs measures 
invariant under lattice translations and rotations, presumably percolating 
sets will always automatically satisfy property (R). The reason is that in 
two dimensions for configurations produced with such a measure it is in 
general impossible that two disjoint sets percolate (cf. Conjecture2); 
therefore, if C percolates, percolation of its complement will be blocked by 
circuits of f 1(C), i.e., property (R) holds. 

We consider disjoint decompositions of V(G) into two connected 
subsets 

V(G) = V+ ~ V_ (19) 

If S c  V(G), we define its boundary OS to be the set of vertices of S 
connected by an edge to the complement of S and its interior int S to be 
s\~s. 

The following fact is almost obvious: 

P r o p o s i t i o n  5. Assume that R and S form islands (i.e., their com- 
plements percolate), and assume furthermore that R and S "do not touch," 
i.e., there is no edge between a vertex of R and a vertex of S. Then also 
R u S forms islands. 

Proof. Assume on the contrary that the complement of R u  S does 
not percolate. Then any finite subset of the lattice T is surrounded by a 
connected circuit of f I ( R u  S). By continuity of f the image of this 
connected set has to be connected; therefore it will be contained entirely 
within R or S. But this means that the complement of R or of S does not 
percolate, in contradiction with the assumption. I 

Next we state another simple fact: 

Proposition 6. One of the following three statements holds: 

(1) V+ percolates. 

(2) V_ percolates. 

(3) 3 a connected component of ~?V+ and a connected component of 
8 V_ forming rings. 

Proof. If neither V+ nor V percolates, the percolation has to be 
blocked by rings of the respective complement, i.e., each finite subset F c  T 
is surrounded by a circuit of f -~(V+) and f -~(V_) .  By continuity the 
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same is true for Of-l(V+)=f-l(OV+) and Of-I(V_)=f-I(OV_).  Again 
by continuity each such circuit can only consist of points belonging to one 
connected component, so (3) holds. | 

We now introduce a class of graphs for which the connected com- 
ponents of the boundary always consist of single vertices. 

D e f i n i t i o n  3. A triangular face of a graph G is a triple {vl, v2,/)3} 
of vertices which are pairwise connected by an edge of G. 

Then the following holds: 

Proposition 7. If G has no triangular faces, f is constant on the 
connected components of af-l(S) for any subset S c V(G). 

Proof. It suffices to consider a connected component of Of-~(S) 
consisting of more than one point. Because T is self-matching, the 
connected components of Of-I(S) consist of circuits, so if x e Of-l(S), it 
will have a neighbor y e Of-a(S) and x and y will have a common neighbor 
z with f ( z ) r  S. Assume now f ( x ) # f ( y ) .  Continuity requires that f(x), 
f (y) ,  f (z)  form a triangular face, which was excluded. So f (x )  has to be 
equal to f(y).  | 

Combining Propositions 6 and 7, we obtain the following result (using 
the finiteness of G): 

Proposition 8. If G does not have triangular faces, then one of the 
following three statements holds: 

(1) V+ percolates. 

(2) V_ percolates. 

(3) There is a vertex v+ s V+ and a vertex v_ e V_ forming rings. 

Examples for graphs without triangular faces are as follows: 

(a) The cube cg, considered as a graph in the obvious way. 

(b) The (regular) dodecahedron ~ ,  considered as a graph in the 
obvious way. 

(c) The "buckminsterfullerene"; this is a polyhedron with 60 vertices 
with the icosahedral group F as a symmetry group. It can be obtained by 
truncating the regular icosahedron and is the molecular structure of the 
famous C60 molecule. 

(d) G =  Z, ,  n/> 4, considered as a graph by placing a line between 
any two adjacent points. 

(e) G = 77, considered as a graph by "placing a line between any two 
adjacent elements; this graph, being infinite, is strictly speaking outside the 
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setting discussed here, but we can apply our arguments if we identify 
elements of Z modulo some integer k. 

If the map f is a "typical" configuration coming from a Gibbs measure 
enjoying some additional symmetry properties, we can say more. Let us 
assume that there is a group H acting transitively on V(G) and that f 
comes from a Gibbs state that is H-symmetric. Then sets related by a 
symmetry transformation have the same percolation properties. Let 
furthermore V+ and V be of equal cardinality and related by a symmetry 
transformation. Then if one of the two sets V+ and V percolates, so does 
the other. Assuming Conjecture 2, this cannot happen, so by Proposition 8, 
each vertex v E V(g) will form rings. This situation will arise in all the 
examples given above if f is a typical configuration produced by the 
"Gibbs" measure (1). Only in case (d) do we have to assume that n is even 
in order to be able to split Z ,  into two equal pieces. 

Proposition 8 can also be applied to some continuous models in the 
following way: 

Let M be a Riemannian manifold with a distance function d( . , .  ) and 

f :  T ~ M  (20) 

be Lipschitz continuous with Lipschitz constant e, i.e., 

d(f(x), f(y))  <<. e Ix -Yl  (21) 

Assume further that M can be decomposed into mutually disjoint 
subsets M~, i = 1, 2,... N, 

N 

M =  U Mi (22) 
i = 1  

such that for any pair i, j either 

o r  

d(Mi, Mj) = 0 (23) 

d(Mi, Mj) > e (24) 

In that case we can associate a graph G(M) to the decomposition of 
M by taking the subsets Mi, i =  1, 2,..., N as vertices and placing a line 
between Mi and Mj iff i r  and d(M~,Mj)=O. Then f induces a 
continuous map 

f~: T~G(M)  (25) 

of the kind discussed before. 
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The trouble is that in many cases the graph obtained this way will 
have triangular faces, because three sets of the decomposition will touch; so 
by our methods here we cannot learn much because Proposition 8 does not 
apply. This happens, for instance, if we divide the 2-sphere into patches 
produced by projecting the cube or the regular dodecahedron from the 
center onto $2. If, on the other hand, we divide any ( N -  1)-sphere into an 
equatorial strip and two polar caps as discussed in the previous section, the 
resulting graph does not contain triangular faces and Proposition 8 
becomes applicable. We obtain, however, only something we know already: 
Either one of the three sets percolates, or all three of them form rings; by 
invoking symmetry we conclude that either the equatorial strip percolates 
or all three sets form rings. 

More interesting is what can be said for the circle $1. We can decom- 
pose it into a number of disjoint intervals and the resulting graph will be 
that of ~Z n. Choosing n = 4, we obtain the following result: 

Proposition 9. Let f :  T ~  $1 be a Lipschitz continuous map with 
sufficiently small Lipschitz constant e (it suffices to choose e < xf2). Then 
either there is a half-circle that percolates or there is an interval J c $1 of 
length JJ[ = 2 arcsin(e/2) having property (R). 

Proof. Divide the circle into four intervals: J ,  its image ~" under a 
rotation by 180 ~ and two pieces of the complement J and J .  The lengths 
of these intervals are IJl  and r e - [ J f ,  respectively. So the Lipschitz 
continuity does not allow neighboring lattices sites to "jump" across any of 
the intervals and we are in the situation of the graph 7/4, so Proposition 8 
applies, with V+ corresponding to ~ r  and V_ corresponding to 

w J .  So either one of the half-circles corresponding to V+ or V 
percolates, or if that is not the case, one of the four intervals forms rings. 
But in that case also the adjacent interval in the other half-circle forms 
rings. | 

It is easy to see that Proposition 9 can be generalized to some other 
manifolds: for instance, for any manifold that contains S~ as a factor (such 
as a torus) or even only contains a factor homotopically equivalent to $1, 
a similar statement can be proven in a similar way. An example of a 
manifold that is homotopically equivalent to the circle is given by the 
"truncated 2-sphere" considered by Richard, ~23) {S~ S2][Sz[ < c}. 

6. APPLICATION TO MODELS 

We will now apply the topological argument of the previous section to 
various models of statistical mechanics of the type described in Eq. (1). 
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First let us consider the 0(2)  model. 

T h e o r e m  1. Assume Conjectures 1 and 2. Then the 0(2)  model on 
the lattice T with a Lipschitz constraint e < x /2  has no mass gap. 

Proof. By Proposition 9 either there is a half-circle that percolates or 
there is an interval J of length 2 arcsin(6/2) with e < 6 < x /2  forming rings. 
By using the conjectures, we can eliminate the first possibility: according to 
Conjecture 1, there is a unique translation-invariant Gibbs state which is 
0(2)  invariant. Therefore if a half-circle percolated, so would its comple- 
ment, in contradiction with Conjecture 2. Hence or forms rings and again 
by Conjecture 1 the same is true about any interval of the same length. So 
neither J nor its complement percolates, but both form rings. We can 
regard the union of J with its image under a rotation by 180 ~ as an 
equatorial strip and apply Proposition 4, which shows that there is no 
exponential decay. I 

As remarked at the end of the previous section, we can apply the same 
argument to Richard's truncated sphere model with a Lipschitz constraint. 
Note that Richard's proof, which uses correlation inequalities to relate the 
model to the 0(2)  model, cannot be used for our constrained models. For 
this reason let us state this result separately: 

T h e o r e m  2. Assume Conjectures 1 and 2. Then the truncated 
sphere model on the T lattice with a Lipschitz constraint e and the 
spin taking values in {SeS21l&l<c} has no mass gap provided 
e < [2(I - c2)31/2. 

Theorem 3. Assume Conjecture 2. Let P be a polytope in S N_  1 not 
having any triangular 2-faces, and on which a finite subgroup H of O(N) 
acts transitively. Assume furthermore that H contains a reflection given by 
(12), and that the vertex set of P can be decomposed into two connected 
subsets V+ and V_ as in (19). Then the models defined by (1) with a 
Lipschitz constant g so small that the spins on neighboring lattice sites are 
either equal or are connected by an edge of P have either long-range order 
or nonexponential decay of correlations. 

Proof. The existence of a reflection symmetry allows the introduction 
of embedded Ising variables and the FK formalism (as remarked, it does 
not cause any problems if some of the vertices are invariant under the 
reflection; the corresponding Ising spins can be assigned arbitrarily since 
they are not coupled). By the results of the previous section either V+ or 
V percolates or there will be a vertex satisfying (R). In the first case we 
have spontaneous symmetry breaking by Conjecture 2; in the second we 
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obtain divergent Ising susceptibility, hence nonexponential decay of the 
Ising correlations. | 

One may wonder if our results do not imply that at least for small fl 
our discrete models are actually massless. But the fact is that even at fl = 0 
we cannot prove that there is no long-range order, in spite of the fact that 
Peierls contours do not cost any energy. We have carried out numerical 
simulations for the cube which indicate that in fact there exists long-range 
order even at fl = 0. The reason is of course that in these models Peierls 
contours cost entropy, and hence free energy, and are suppressed for this 
reason. A similar phenomenon was discovered by Newman and Stein (24) in 
the low-temperature phase of the Ising-like systems: they show that, 
contrary to naive expectations, there is an abundance of domains which 
prefer energetically to be flipped. 

Finally, we would like to make a remark on the Z model, which is a 
version of the solid-on-solid (SOS) model. We cannot define translation- 
invariant Gibbs states for this model, but we can try to fix the spin at the 
origin and take thermodynamic limits. Considering equivalence classes of 
spin values mod 2k, we obtain that there is either percolation of a certain 
spin value or formation of rings for an equivalence class mod 2k of spin 
values. The former happens for large fl, whereas the latter presumably takes 
place for small fl (in the "rough" phase). 

APPENDIX.  PROOF OF THE M E R M I N - W A G N E R T H E O R E M  
FOR A SIMPLIFIED LIPSCHITZ CONTINUOUS 
MODEL 

The simplified model we are considering in this appendix is inspired by 
a similar one discussed in Section 6 of ref. 12. It is defined as follows: We 
start with the n.n. constrained model on the lattice T characterized by the 
Gibbs factor 

~ ( S - S ' )  = e x p [ - f l h ( S - S ' ) ]  O(S. S ' -  c) (A.1) 

for each n.n. pair x, y with spins S, S'; c =  1 -  82/2, 0 is the Heaviside 
function, and h ~ C 2. It is assumed that h satisfies the following conditions: 

h(1)--0 

h'(1) --- - 1  (A.2) 

h'(0) ~< 0 for x ~ [0, 1 ] 

[the normalizations of h(1) and h'(1) clearly do not imply any loss of 
generality]. 
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Now consider the sequence Lo, LI,L2 .... of concentric hexagonal 
loops on the dual lattice surrounding the origin in 7". 

We send/3 ~ ~ on all bonds of T that do not cross one of the loops 
Lo, LI,  L2,.... In other words, we force all spins connected by those bonds 
to be equal. It is intuitively clear that this makes the model more ordered, 
even though no correlation inequalities are known to us that would make 
this into a proven mathematical statement. 

The resulting model can be considered as a half-infinite chain of O(N) 
spins 

$1, $2, $3 .... (A.3) 

coupled through the non-translation-invariant Gibbs factors 

gk, k + ~(Sk" Sk +1) = zk(fl)-1 e x p [ -  Kkfih(S~. Sg + 1)] O(Sk. Sk +,) (A.4) 

where the normalization Zk(fi) is chosen such that ~ gk.k+l(S'S ')dS'= 1 
and Kk-= 12k+ 6. The Gibbs factors (A.4) can be interpreted as "radial 
transfer matrices" of the model. 

We claim that the model does not have long-range order at any fl; 
more specifically, we will prove the following result: 

Proposition A.1. The O(N) model defined by (A.3) has a unique 
O(N) invariant "Gibbs" state. 

Proof. If suffices to show that the probability distribution of 
$1, $2,...,S, given Sk, Sk+l, Sk+3 .... converges weakly to a unique O(N) 
invariant measure as k ~ ~ .  We will show actually that for k ~ 

r--1 i f  I p(dS1 ..... dXrlSk, Sk+l .... )-~ I-[ gj, j+l(Sj. Sj+~) dSj (A.5) 
j=l j=l 

By the one-step Markov property of our model for k > r the left-hand 
side of (A.5) can be rewritten simply as 

p(dS1 ..... dgr [ Sk, Sk +1 ,"-)~--- p(NS1 ,..., dSr ] Sk) ( A . 6 )  

and it is given by 
r k k - - I  

p(dS1,...,dSrlSk)= I-I dS, f 1-I g,.,+l(S,'Si+l) I-[ dSi (A.7) 
j = l  i=1 i = r + l  

We now expand the Gibbs factors in Gegenbauer polynomials, corre- 
sponding to the irreducible representations of O(N): 

gk, k+t(t) = ~ alk)(fl)C;(t) (A.8) 
l=O 
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where C[ ( t )=  C;(t)C[(1)/ht, C; is the standard Gegenbauer polynomial 
(see, for instance, ref. 25), h t=  ~ dS [C7(S. So)] 2, and v=  (N-2) /2 .  The 
expansion (A.8) is at least convergent in the sense of L 2 ( [ - 1 , 1 ] ,  
(1 - tz) ~-1/2 dt). 

With the chosen normalization the C~ are the kernels of orthogonal 
projections: 

f dSC;(S1.S)  ~v Ck(S. 32) = (~lkC;(S1 . 52) (A.9) 

as follows, for instance, from the addition theorem for the Gegenbauer 
polynomials [Eq. (34) on p. 178 of ref. 25]. 

Therefore the "convolutions" in (A.7) correspond simply to multiplica- 
tion of the expansion coefficients: 

f dSk gk- l,k(Sk- 1" Sk) gk,~+ l(Sk" Sk+ 1) 

= ~ C;(Sk l'Sk+l)a~k-1)(fl)alk)(fl) (A.10) 
l = 0  

(A.5) and hence Proposition A.1 will follow from the next result: 

k e m m a  A.1. For 14:0, l i m k ~  k - ~ a ~ ) _  I-[j = r - 0, whereas for l = 0, it 
is equal to 1. 

Proof. The second statement is a trivial consequence of the 
normalization condition of the Gibbs factors gk.k+1. 

To see the first statement, note that the coefficients a~ j) are given by 

a~j)(fl) = ~ 1  f /exp[-Kj f lh( t )]  C';(t)(1 - -  t2) v 1/2 dt (A.I1) 

where CT(t)= C7(t)/C7(1) and (j(fl)is chosen such that a~J)= 1. Therefore 
a~J)(fl) = b,(Kjfl), with 

bt(7) = ~(7) -1 exp [ -~h ( t ) ]  ~;(t)(1 - t2) v- 1/2 dt (A.12) 

We claim now the following result: 

L e m m a  A .2 .  F o r  7 ~  

b,(7) = 1 - ~ + O  (A.13) 

with cz = l(l + 2v). 
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Remark. ct is the value of the quadratic Casimir operator of O(N) on 
the eigenspace corresponding to the "angular momentum" I or equivalently 
the eigenvalue of the Laplace-Beltrami operator A cB on that space. 

Proof of Lemma A.2. We use the Taylor expansion of h(t) at t = 1 
to write 

b 2 h ( 1 - x ) = x + ~ x  +r(x) (A.14) 

where r(x)= o(x2). So we obtain 

(A.15) 

Let us consider the case b = r = 0. Then 

bl (7)  = (1(7)  - 1  e - ~ X C ; ( 1 - x ) ( 2 x - x 2 )  ~ 1/2dx (A.16) 

To evaluate (A.16), consider 

e-./Xxp l dx=7 p e - , yp  l dy=7 PF(p)+O(e -7c) (A.17) 

Therefore 

(1(7) = 2~- ' /27-v- ' /2  v +  1- 2 ~  + O(y-2) (A.18) 

The leading behavior of the numerator of (A.16) can be determined 
similarly; the result is 

v + 1 / 2  d CT(t ) 
bl(7)= 1 + 0(7 2) (A.19) 

7 dt t= 1 

The constant in (A.19) can be found easily from the generating function of 
the Gegenbauer polynomials: 

( 1 - 2 z t + z Z ) - v =  ~ CT(t)z l (A.20) 
I = 0  

and the result is (d/dt) C~(t)l,=a =c~/(2v+ 1), s o  for the special case 
b = r = 0 Lemma A.2 is proven. 
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Returning to the general case, we see that the normalization (t(7) as 
well as the numerator  of (A.12) will only change to 0(7 -2) relative to the 
leading term. Therefore b+(?) will change only by a correction of order ?-2,  
so that Lemma A.2 is also proven in general. | 

We can now complete the proof  of Lemma A.I: 

~-~ (J) C I 
a+ ( f l )=  [-I bl(Kjfl)= 1-- +r,( j )  (A.21) 

j = r  j = r  J = r  

with r+(j) = O(j-2). It  is now easy to see that the right-hand side of (A.21) 
goes to zero as k ~ ~ :  Taking the logarithm, we obtain 

/=r  cl r/ 
k ~ l [ l n ( 1 - - - ~ j ~ ) + l n ( l + l _ e j K / ~ ) ]  

+ 1 -~/4 
~< ~ - c+  rj (A.22) 

J = r  

The second term is bounded as k ~ ~ ,  whereas the first term goes 
logarithmically to - ~ ,  so Lemma A.1 is proven. | 

Since our simplified model has less fluctuations than the full model 
defined by (1), we have not doubt that the Mermin-Wagner  theorem also 
holds for the latter and Conjecture 1 is true, even though it may be hard 
to construct a proof. Our  result also shows that the C 2 condition that is 
usually imposed on the Hamiltonian is too strong; it should be enough if 
it holds for small IS(x) - S(y)I. The reason is that the large fluctuations at 
large distances that are underlying the Mermin-Wagner  theorem can be 
built up from small local fluctuations. 
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